Bayer MaterialScience Introduces New Grade of Carbon Nanotubes with Improved Dispersibility

Bayer MaterialScience is introducing a new grade of carbon nanotubes (CNTs) at the Nanotech trade show in Tokyo from February 17 to 19. Compared with the existing product Baytubes® C 150 P, the CNTs with the trade name Baytubes® C 70 P are characterized by improved dispersibility, making them highly suited to use in mechanically sensitive polymers. Furthermore, economic advantages can result from the shorter times required to disperse the nanotube agglomerates in water and other low-viscosity liquids.

“This new trial product is our response to inquiries from our customers, who are looking for better dispersibility from the Baytubes® agglomerates. The new product is more easily incorporated than Baytubes® C 150 P, as reflected by its greatly reduced bulk density of just 45 to 95 kilograms per cubic meter. Therefore, Baytubes® C 70 P are ideal for direct incorporation in mechanically sensitive thermoplastics,” explains Dr. Heiko Hocke, a carbon nanotubes specialist at Bayer MaterialScience. “With regard to their other properties, the two Baytubes® grades are virtually the same.” Multi-wall carbon nanotubes, with their very large length-to-diameter ratio, display very high tensile strength and exceptional electrical and thermal conductivity.

Baytubes® are agglomerated CNTs and offer a very high degree of purity. The agglomerates can be easily and safely handled and efficiently processed. Even small amounts are capable of imparting new properties to dispersions, plastics, metals and other materials. The potential fields of application for these modified materials range from sporting goods to the electronics industry and mechanical engineering.

Bayer MaterialScience is one of the few companies worldwide capable of manufacturing carbon nanotubes with a high degree of purity and a consistent level of quality on an industrial scale, thanks to an innovative processing method developed in-house. Only recently, a new pilot plant for CNTs with an annual capacity of 200 tons has been inaugurated in Leverkusen.

About Bayer MaterialScience:
With 2008 sales of EUR 9.7 billion, Bayer MaterialScience is among the world’s largest polymer companies. Business activities are focused on the manufacture of high-tech polymer materials and the development of innovative solutions for products used in many areas of daily life. The main segments served are the automotive, electrical and electronics, construction and the sports and leisure industries. At the end of 2008, Bayer MaterialScience had 30 production sites and employed approximately 15,100 people around the globe. Bayer MaterialScience is a Bayer Group company.

For more information, visit www.bayermaterialscience.com and www.baytubes.com.

National Tsing Hua University Researchers Reveal Pyrolysis Process to Produce Carbon-Coated Metal Oxide Nano-Particles

FIG. 4, U.S. Patent Application 20100035750.is a transmission electron microscope (TEM) picture of  carbon-coated TiO2 nano-particles obtained with pyrolysis at 800.degree. C by Taiwanese Researchers
National Tsing Hua University (Hsinchu City, TW) researchers have developed a  method of preparing carbon-coated metal oxide nano-particles and carbon-coated metal oxide nano-particles. The method of preparation is described in U.S. Patent Application 20100035750.
The method includes the following steps: a precursor of a polymer is polymerized on metal oxide nano-particles to form polymer-coated metal oxide nano-particles. Then, pyrolysis is conducted to carbonize the polymer coated on the metal oxide nano-particles, so as to form carbon-coated metal oxide nano-particles, according to inventors Chia-Min Yang, Yu-Chuan Hsu, Huang-Ching Lin, Yi-Ting Liao and  Chien-Wei Lue
Among all the functional materials to be synthesized on the nano-scale, metal oxides are particularly attractive candidates, from a scientific point and a technological point of view. The unique characteristics of metal oxides make them the most diverse class of materials, with properties covering almost all aspects of material science. The great variety of structures makes them the primary target in solid-state chemistry and provides the basis for designing new materials. In addition, metal oxide materials exhibit fascinating electronic and magnetic properties, including metallic or insulating and ferro-, ferri- or antiferromagnetic behavior.
All these properties make metal oxides a vital constituent in technological applications like gas sensing, electroceramics, catalysis, energy conversion, data storage and so on. Among them, oxides of titanium, tin, iron and other metals that possess moderate band gaps can absorb visible to ultra-violet light to proceed photochemical reactions, such that these materials can serve as photocatalysts.

Some of these metal oxide photocatalysts are commonly used in daily life, and their potential in photochemical elimination/decomposition of organic pollutants for environmental purpose and in photovoltaics and solar energy utilization are widely recognized and are intensively studied worldwide.

A conventional method of preparing a metal oxide nano-structure is the aqueous sol-gel technique using a suitable precursor, but this technique has difficulties in reducing the particle size and controlling the reaction condition. Therefore, in recent years, the non-aqueous sol-gel technique is also adopted.

On the other hand, coating a layer of carbon on the surface of a nano-metal oxide photocatalyst can effectively improve the crystallinity stability, optical activity and the performance in adsorbing dye molecules or contaminants. In the conventional method of preparing carbon-coated metal oxide nano-particles, already formed metal oxide nano-particles and a polymer are mixed, and then high-temperature pyrolysis is conducted to carbonize the polymer on the nano-particles. However, the thickness of the carbon coating formed with the above method is usually not uniform, and the carbon content of the nano-particles is difficult to control.

National Tsing Hua University researchers developed a method of preparing carbon-coated metal oxide nano-particles, so as to solve the problems in the prior art. The preparation method includes the following steps: a precursor of a polymer is polymerized on metal oxide nano-particles to form polymer-coated metal oxide nano-particles, wherein the metal oxide contains one or more metals. Pyrolysis is then conducted to carbonize the polymer coated on the metal oxide nano-particles. 


In some embodiments, forming the polymer-coated metal oxide nano-particles includes the following steps: a precursor of the metal oxide and the precursor of the polymer are uniformly dispersed in a solvent to form a solution. Then, the solution is heated to cause reaction, such that the precursor of the polymer is polymerized on the just formed metal oxide nano-particles to form the polymer. The preparation method further includes separating the polymer-coated metal oxide nano-particles from the solution after the polymer-coated metal oxide nano-particles are formed. 

Multiferroic Crystal Metal-Organic Frameworks Could Provide Materials for Smaller Faster Electronic Devices and Improved Hydrogen Storage

Two of The Florida State University’s (Tallahassee, FL) most accomplished scientists recently joined forces on a collaborative research project that has yielded groundbreaking results involving an unusual family of crystalline minerals. Their findings could lay the groundwork for future researchers seeking to develop a new generation of computer chips and other information-storage devices that can hold vast amounts of data and be strongly encrypted for security purposes.
Working with a team of researchers from various disciplines, Naresh S. Dalal and Sir Harold W. “Harry” Kroto, both world-renowned chemists and educators, took a close look at a family of crystals known as metal-organic frameworks, or MOFs. Employing both laboratory experimentation and computational analysis, they found that four such crystals possessed properties that rarely coexist.
“We identified these four crystals as ‘multiferroic,’ meaning that they are simultaneously ferromagnetic and ferroelectric in nature when cooled to a specific temperature,” said Dalal, Florida State’s Dirac Professor of Chemistry and Biochemistry. (Ferromagnetism means a material possesses magnetic poles, while ferroelectricity refers to a material that possesses positive and negative electrical charges that can be reversed when an external electrical field is applied.)
“Normally, these two properties are mutually exclusive,” Dalal said. “Most materials are either ferromagnetic or ferroelectric based on the number of electrons in the ion’s outer electron shell. Therefore, finding four multiferroic materials at one time is quite scientifically significant and opens numerous doors in terms of potential applications.”
Multiferroic materials have been a hot topic of research in recent years, with researchers finding applications in the areas of hydrogen storage and the design of advanced optical elements, among others. Kroto sees another potential use: in the creation of high-powered computer memories and other data storage devices that can hold far more information than is currently possible.
“Theoretically, it might be possible to design devices that are much smaller and faster than the ones we use today to store and transmit data,” said Kroto, a Francis Eppes Professor in Florida State’s Department of Chemistry and Biochemistry. “And with data split over two mediums, information could be encrypted in a way that makes it far more secure than is currently possible. This could have wide-ranging applications in areas as diverse as the aeronautics industry, the military, the workplace and even the average consumer’s home.”
Dalal pointed to another possible benefit — high-tech devices that make far less of an environmental impact.
“The four new multiferroic crystals that we have identified all substitute other, less toxic metals for lead, which is a potent neurotoxin,” he said. “By reducing the amount of lead that enters landfills, we also reduce the amount that enters our water supply — and our bodies.”
Dalal, Kroto and their colleagues recently published a paper on their findings in the peer-reviewed Journal of the American Chemical Society (JACS). Their research was then summarized in a second article published in the prestigious international science journal Nature — a powerful symbol of the significance with which their findings have been greeted within the worldwide scientific community.
“On the basis of the type of materials research I was keen to initiate here at Florida State, it was natural to collaborate with Dr. Dalal due to his deep understanding of the complexities of phase transitions,” Kroto said. “It is in particular the subtle aspects of phase behavior, well beyond those traditional ones exhibited by normal gases, liquids and solids, that led to this work being highlighted recently by Nature and Angewandte Chemie.” (The latter is a prominent, peer-reviewed scientific journal that reviews all aspects of chemistry.)
In addition to Dalal and Kroto, other collaborators from Florida State were Ronald J. Clark, an emeritus professor of chemistry and biochemistry who continues to conduct research; Prashant Jain, a graduate research assistant; and Vasanth Ramachandran, a graduate teaching assistant. Additional researchers were Haidong Zhou, an assistant scholar/scientist at the National High Magnetic Field Laboratory in Tallahassee; Anthony K. Cheetham, Professor of Materials Science and Metallurgy at the University of Cambridge in England; and Brian H. Toby, a senior physicist at Argonne National Laboratory in Illinois.
In the world of science, Dalal and Kroto are known as scientific heavy hitters, each with decades of research experience and scores of professional accolades to his credit. Kroto is perhaps best known as one of three recipients of the 1996 Nobel Prize for Chemistry and Biochemistry for his co-discovery of buckminsterfullerene, a form of pure carbon better known as “buckyballs.” He came to Florida State in 2004 after 37 years at the University of Sussex in England. Dalal, meanwhile, was recognized in 2007 as one of the top scientists in the southern United States by the Memphis Section of the American Chemical Society, which selected him to receive its Southern Chemist Award. That same year, he was named the top chemist in Florida by the Florida Section of the American Chemical Society, which bestowed upon him its annual Florida Award.

City University of Hong Kong Researchers Develop Low Cost Molecularly Imprinted Polymers for Clinical, Environmental and Food Testing

Frequent food poisoning cases and contamination caused by pesticides and chemicals in recent years have highlighted the enormous threat posed to the environment and public health. In response, efforts have been made to develop new, more efficient testing methods. Researchers at City University of Hong Kong (CityU) have devised a chemosensing analysis method of testing medicines and detecting pesticides in foods, pollutants in water and toxins in fish that is more cost-efficient, rapid and effective.
Chemosensing is a chemical-detection method in which targeted analytes are detected by molecular-level sensors known as chemosensors. The application of such a technique has always been limited by associated high costs. But CityU researchers have successfully achieved a breakthrough in overcoming such technical barriers with their molecular imprinting technology that reduces the cost of developing new chemosensors. The molecular imprinting technology is known as the template-directed polymerization technique. The name is a big mouthful but its’ small when it comes to the costs associated with generating artificial receptors for chemosensors.
“CityU has developed chemosensing applications from low-cost molecularly imprinted polymer materials for clinical testing, and environmental and food safety monitoring. It enables the pre-testing necessary for laboratory tests, and the testing results are highly reliable,” said Dr Michael Lam Hon-wah, Associate Professor of the Department of Biology and Chemistry at CityU. The Knowledge Transfer Office of CityU is now applying for a patent for this technical innovation.
Detection is usually undertaken in laboratories where analysis instruments are used in a costly and time-consuming process. The cutting-edge technology developed by CityU is unique and offers competitive advantages. It only costs one-tenth the present testing price. Results can be obtained within one minute and this testing technique is easy to manage and the technical proficiency required of operators is relatively low. The molecular imprinted polymer materials are small and highly portable.
Molecularly imprinted polymer materials can be used widely in commercial applications to detect numerous chemicals, including harmful pesticides in agricultural products, such as DDT; contaminants in drinking water, such as HCH; toxins in seafood, such as histamine; leaked poisonous gas; and Tributyltin (TBT), a harmful substance in marine coatings that can damage the auditory systems of dolphins. This innovative testing method can also prevent or minimize physical damage to both humans and the environment.

Cambridge Researchers Develop Revolutionary Way of Capturing a High-Resolution Still Image Alongside Very High-Speed Video

Scientists funded by the Biotechnology and Biological Sciences Research Council and the British Heart Foundation at the University of Oxford have developed a revolutionary way of capturing a high-resolution still image alongside very high-speed video – a new technology that is attractive for science, industry and consumer sectors alike.
By combining off-the-shelf technologies found in standard cameras and digital movie projectors they have successfully created a tool that will transform many forms of detailed scientific imaging and could provide access to high-speed video with high-resolution still images from the same camera at a price suitable for the consumer market.
This could have everyday applications for everything from CCTV to sports photography and is already attracting interest from the scientific imaging sector where the ability to capture very high quality still images that correspond exactly to very high speed video is extremely desirable and currently very expensive to achieve. The technology has been patented by Isis Innovation, the University of Oxford’s technology transfer office, which provided seed funding for this development and welcomes contact from industry partners to take the technology to market. The research was published on February 14th 2010 in Nature Methods.
Dr Peter Kohl and his team study the human heart using sophisticated imaging and computer technologies. They have previously created an animated model of the heart, which allows one to view the heart from all angles and look at all layers of the organ, from the largest structures right down to the cellular level. They do this by combining many different types of information about heart structure and function using powerful computers and advanced optical imaging tools. This requires a combination of speed and detail, which has been difficult to achieve using current photographic techniques.
Dr Kohl said: “Anyone who has ever tried to take photographs or video of a high-speed scene, like football or motor racing, even with a fairly decent digital SLR, will know that it’s very difficult to get a sharp image because the movement causes blurring. We have the same problem in science, where we may miss really vital information like very rapid changes in intensity of light from fluorescent molecules that tell us about what is happening inside a cell. Having a massive 10 or 12 megapixel sensor, as many cameras now do, does absolutely nothing to improve this situation.
“Dr Gil Bub from my team then came up with a really great idea to bring together high-resolution still images and high-speed video footage, at the same time and on the same camera chip – ‘the real motion picture’! The sort of cameras researchers would normally need to get similar high-speed footage can set you back tens of thousands of pounds, but Dr Bub’s invention does so at a fraction of this cost. This will be a great tool for us and the rest of the research community and could also be used in a number of other ways that are useful to industry and consumers.”
“What’s new about this is that the picture and video are captured at the same time on the same sensor” said Dr Bub. “This is done by allowing the camera’s pixels to act as if they were part of tens, or even hundreds of individual cameras taking pictures in rapid succession during a single normal exposure. The trick is that the pattern of pixel exposures keeps the high resolution content of the overall image, which can then be used as-is, to form a regular high-res picture, or be decoded into a high-speed movie.”
The technique works by dividing all the camera’s pixels into groups that are then allowed to take their part of the bigger picture in well-controlled succession, very quickly, and during the time required to take a single ‘normal’ snapshot. So for example, if you use 16 pixel patterns and sequentially expose each of them for one sixteenth of the time the main camera shutter remains open, there would be 16 time points at which evenly distributed parts of the image will be captured by the different pixel groups. You then have two choices: either you view all 16 groups together as your usual high-resolution still image, or you play the sixteen sub-images one after the other, to generate a high-speed movie.
This concept has attracted the attention of Cairn Research, a UK based scientific instrument manufacturer. “High speed imaging of biologically important processes is critical for many of our customers at Cairn Research,” said Dr Martyn Reynolds, “Frequently there is a requirement to record events in living cells that are over in a fraction of a second, and this pushes us to the limits of existing technology. For several years we have been developing a product line for fast imaging of optical slices though cells, and we are very interested in using the processes and technology developed by the group in Oxford to extend the capabilities of our devices and the scientific benefits this could bring.”
The research may soon move from the optical bench to a consumer-friendly package. Dr. Mark Pitter from the University of Nottingham is planning to compress the technology into an all-in-one sensor that could be put inside normal cameras. Dr Pitter said: “The use of a custom-built solid state sensor will allow us to design compact and simple cameras, microscopes and other optical devices that further reduce the cost and effort needed for this exciting technique. This will make it useful for a far wider range of applications, such as consumer cameras, security systems, or manufacturing control.”
Dr Celia Caulcott, BBSRC Director of Innovation and Skills said: “This is a really clever, effective way of looking at real-life biological processes that started by trying to solve a research problem and is leading to whole host of opportunities. It shows that it is possible for creative solutions in bioscience tools and technologies to lead to marketable products. These researchers have been successful in making their own research tools more powerful and it is to their credit that they have also thought about the wider possibilities for their new technology.”

About The British Heart Foundation (BHF)
The BHF is the nation’s heart charity, dedicated to saving lives through pioneering research, patient care, campaigning for change and by providing vital information. But we urgently need help. We rely on donations of time and money to continue our life-saving work. Because together we can beat heart disease. For more information on the BHF, visit www.bhf.org.uk/pressoffice
About the Isis Innovation
Isis Innovation is the University of Oxford’s technology transfer company and manages the University’s intellectual property portfolio, working with University researchers on identifying, protecting and marketing technologies through licensing, spin-out company formation and material sales. Isis files on average one new patent application each week, has concluded over 400 technology licensing agreements, and established 64 new spin-out companies from Oxford. Isis also manages Oxford University Consulting, which arranges consulting services providing clients access to the world-class expertise of the University’s academics to enhance innovative capability. Last year OUC arranged over 150 consulting deals. Isis has established a separate business division, Isis Enterprise, offering consulting expertise and advice in technology transfer and open innovation to university, government and industrial clients around the world. Isis was founded in 1987 and is today one of the world’s leading technology transfer and innovation management companies. www.isis-innovation.com

Videos and images
The first video and image below are protected by copyright law and may be used with acknowledgement of the Nature Methods article http://dx.doi.org/10.1038/nmeth.1429